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Pathways to Deep Decarbonization
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California Pathways Analysis
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The Technology Path to Deep Gr
2050: The Pivotal Role of Electricity
James H. Williams, et al.

Science 335, 53 (2012);

DOI: 10.1126/science. 1208365

Gas Emissions Cuts by

2008

The Technology Path to Deep
Greenhouse Gas Emissions Cuts by
2050: The Pivotal Role of Electricity

James H. Williams,? Andrew DeBenedictis,* Rebecca Ghanadan,> Amber Mahone,*
Jack Moore,” William R. Morrow 11I,* Snuller Price,* Margaret S. Torn®*

Several states and countries have adopted targets for deep reductions in greenhouse gas emissions
by 2050, but there has been little physically realistic modeling of the energy and economic
transformations required. We analyzed the infrastructure and technology path required to meet
California’s goal of an 80% reduction below 1990 levels, using detailed modeling of infrastructure
stocks, resource constraints, and electricity system operability. We found that technically feasible
levels of energy efficiency and decarbonized energy supply alone are not sufficient; widespread
electrification of transportation and other sectors is required. Decarbonized electricity would become
the dominant form of energy supply, posing challenges and opportunities for economic growth and
climate policy. This transformation demands technologies that are not yet commercialized, as well as
coordination of investment, technology development, and infrastructure deployment.

2012

2014

2015: California Executive Order B-30-15: reduce greenhouse gas

emissions to 40 percent below 1990 levels by 2030

ep
DECARBONIZATION
PATHWAYS
PROJECT



A GLOBAL INITIATIVE FOR THE UNITED NATIONS
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* Deep Decarbonization Pathways Project

Espp 2015 report
e National blueprints for limiting warming to 2°C
* Independent research teams from 16 countries pathwaysto
deep decarbonization
e 3/4 of current CO, emissions T R
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Moving from incrementalism to transformation
Backcasting: how do we get there from here?
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A Path for Climate Change, Beyond Paris IDDRI (et
By JUSTINGILLIS  DEC.1,2015 deepdeca rbonization .0rg

UN issued with roadmap on how to

~ avoid climate catastrophe
Report is the first of its kind to prescribe concrete actions that the
biggest 15 economies must take to keep warming below 2C
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Paris Agreement,
Article 4, Paragraph 19
“All Parties should
strive to formulate and
communicate long-
term low greenhouse
gas emission

development
strategies...”




Why long-term
pathways are essential




Long Equipment Lifetimes on Supply and
Demand Side of Energy System

« A car purchased today is likely to replaced at most 2 times before 2050.
A residential building constructed today is likely to still be standing in 2050.

2015 > 2030 > 2050

Electric lighting 4 replacements

Hot water heater 3 replacements

Space heater 2 replacements

Light duty vehicle 2 replacements

Heavy duty vehicle 1 replacements
Industrial boiler 1 replacements

Electricity power plant 1 replacements

Residential building 0 replacements
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Avoiding emissions dead ends

US GHG emissions by economic sector
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Anticipating forks-in-the-road: Real example
from California

ﬁElectric vs. Fuel Cell Vehicles \

Electric vehicles Electric
G charging
Zero infrastructure
@ Emissions
Vehicles H2 fuel
. D production:
Fuel cell vehicles
?

o

ﬂ. Electrification vs. Low Carbon Gas in Buildings

Biogas and low- No bu.il.ding
carbon synthetic ﬂ e!ectnf!cat!on,.
methane biogas in pipeline
m Building
siratesy Electric heat BU“dif\_g .
K pumps, ﬁ electrlﬁc.ah?n,/
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grid electrolysiy

electrification
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US Pathways

Research Questions &
Methods




U.S. Pathways Analysis

E3, UC, LBNL, PNNL team
o e Technical Report, Nov. 2014

pathways to . What would it take for US to achieve
deep decarbonization 80% GHG reduction below 1990 level
in the United States by 2050?

- What would it cost?

- What physical changes are
required?
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Reports available at http://usddpp.org

w - Is it technically feasible?
N
, \ Policy Report, Nov. 2015

- What are the policy
implications for the US?




Scenario Design Constraints

Infrastructure inertia

Electric reliability

Same energy services as EIA forecast
Technology is commercial or near-commercial
Environmental limits (biomass, hydro)

520 U.S. GDP (Trillion $2012) >00 U.S. population (Milliorﬁu
$40 - 400 -

$30 - 300 T

$20 - 200 -

$10 - 166% increase 100 - 40% increase
$0 0

2010 2020 2030 2040 2050 2010 2020 2030 2040 2050

U.S. National Energy Modeling System and 2013 Annual Energy Outlook reference case
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PATHWAYS Model

 Energy system model, user-defined scenarios
« 80 demand sectors, 20 supply sectors
 Annual time steps with equipment lifetimes —F

9 US census divisions separately modeled
« Electricity dispatch, three US interconnects ‘

New Vehicles by Vintage Total Stock by Year
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GCAM Used to Model Non-Energy
and Non-CO, emissions

Well-known IAM used in IPCC Fifth Assessment Report

Biomass production and indirect land use change emissions

Non-energy and non-CO, GHG mitigation

Assess sensitivity to terrestrial carbon sink assumptions
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US Pathways
High-Level Results




80% Reduction in CO,e by 2050 is Achievable

US GHG emissions
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Multiple Feasible Technology Pathways Exist
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Current Energy System

2014 Reference Case

Electricity
Generation
Geothermal — Grid Electricity
R —a B K
Solar ‘ ' = 1= 1=
Wind —
Buildings
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Deeply Decarbonized Energy System

2050 Mixed Case
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Three Pillars of Deep Decarbonization
Required in All Cases

Energy Decarbonization End Use Fuel
Efficiency of Electricity Switching to
Electric Sources
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Pathways to Deep Decarbonization in the United States, Mixed case results
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Three Pillars Results for China, India, UK

China

Energy efficiency Decarbonization of electricity Electrification of end-uses
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Deep Decarbonization is Affordable

Net Enersy System Costs: Net energy system cost in 2050 ~ 0.8% GDP
(-0.2% - +1.8%)

$1,2008 (does not include economic benefits of JE—
avoided pollution or climate damage)

$1,000B / T Electricity
$800B -3 Pipeline Gas
p
$600B Hydrogen

Net Costs

$400B

Y

$200B End-Use Equipment

$0B
($200B) Gasoline Fuels
($400B)
Fuels
($6008) Diesel Fuels
($800B) Jet Fuel
($1,000B)

2014 2016 2018 2020 2022 2024 2026 2028 2030 2032 2034 2036 2038 2040 2042 2044 2046 2048 2050
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Electricity System
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Electricity Generation by Type in 2050
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Generating Capacity by Type in 2050
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Generation Transition by Interconnect and
Decade - High Nuclear Case

Generation Share by Interconnection: Solar PV
% of annual generation M Solar Thermal

Eastern Interconnection Texas Interconnection Western Interconnection Wind - Offshore
B Wind - Onshore
B Geothermal

M Hydro
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M oil
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Hourly Electricity Supply & Demand in WECC,
High Renewables Case, Week in March 2050

WECC Electricity Generation 3/2/2050 - 3/8/2050:
MWh

300K

a0 O O

) I A . NS A

0K
[ curtailment [C] onshore Wind [O] Conventional Hydro [[] Conventional Gas [_] Gas with CCS [] small Hydro [J Nuclear [ Conventional Coal
[] solar Pv [ offshore Wind [] storage Discharge [] Oil [ Biomass [0 Geothermal O Coal with cCs [ cHP

WECC Electricity Load 3/2/2050 - 3/8/2050:
MWh

300K

200K

100K

0K

[J Hydrogen Electrol.. [ Electric Vehicle C.. [[] Commercial Flexib.. [[] Inflexible Demand
[OJ synthetic Methane [l Industrial Flexible .. [] Residential Flexibl..

CJ
)
5
o

29



Eastern Interconnection, High Renewables
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Eastern Interconnection, Nuclear
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Western Interconnection, High Renewables
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Western Interconnection, Nuclear
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Observations on

Nuclear-Renewable
Synergies




RE-Nuclear Shared Challenges/Opportunities
Under Deep Decarbonization

« Rapid & large-scale expansion of generation
« Coordination with large-scale electrification

« Regionalization of grid planning
« Siting of generation, trans, flexi

& operations
nle demand

« Large-scale P2G (H2, SNG) & liquid fuels

« Sustainable utility business mod
 Wholesale market structure
« Public perceptions of readiness,

el

acceptability

* Policy community conventional wisdom



Energy System Perspective on
Nuclear-Renewable Synergies

Deep decarbonization is a system problem

« Requires coordination across sectors, between
supply and demand sides

Evaluate solutions from system cost perspective

« Individual measure cost (e.g. LCOE, $/ton) poorly
represents net cost of supplying and using energy

Inflexible generation has system solutions

« Very large scale flexible demand good for both
high nuclear & high renewables systems

Rethink supply side drop-in solutions

« E.g. battery stora?e, in-situ shaping, dispatchable
nuclear may look less attractive from system view



Market Design Challenges in High Nuclear &
High Renewable Electricity Systems

« Variable costs are near zero
« How to allocate fixed costs on time dependent basis in
economically rational way?
 Meeting net load, not traditional load, is new operating
reality

« How to reflect equivalent value of supply and demand
side flexibility > symmetrical wholesale market
design?

« Supply and demand side procurement closely linked

« How to send signal to potential demand side
developers? - avoid premature building of integration
solutions e.g. storage

 New asset utilization paradigm

« Net load factor, not traditional load factor
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THANK YOU

® lim.williams@unsdsn.org

www.deepdecarbonization.org
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